Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX
نویسندگان
چکیده
Herein, we describe the successful construction of composite DNA nanostructures by the self-assembly of complementary symmetrical 2,6,14-triptycenetripropiolic acid (TPA)-DNA building blocks and zinc protoporphyrin IX (Zn PpIX). DNA-organic molecule scaffolds for the composite DNA nanostructure were constructed through covalent conjugation of TPA with 5'-C12-amine-terminated modified single strand DNA (ssDNA) and its complementary strand. The repeated covalent conjugation of TPA with DNA was confirmed by using denaturing polyacrylamide gel electrophoresis (PAGE), reverse-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). The biologically relevant photosensitizer Zn PpIX was used to direct the hybridization-mediated self-assembly of DNA-TPA molecular building blocks as well as a model guest molecule within the DNA-TPA supramolecular self-assembly. The formation of fiber-like composite DNA nanostructures was observed. Native PAGE, circular dichroism (CD) and atomic force microscopy (AFM) have been utilized for analyzing the formation of DNA nanofibers after the coassembly. Computational methods were applied to discern the theoretical dimension of the DNA-TPA molecular building block of the nanofibers. A notable change in photocatalytic efficiency of Zn PpIX was observed when it was inside the TPA-DNA scaffold. The significant increase in ROS generation by Zn PpIX when trapped in this biocompatible DNA-TPA hybrid nanofiber may be an effective tool to explore photodynamic therapy (PDT) applications as well as photocatalytic reactions.
منابع مشابه
Synthesis of Two Compounds with Self-Assembled Monolayer Properties: Riboflavin 2', 3', 4' , 5' Tetra Octadecanoate & Bis (Phosphatidyl Ethanol) Protoporphyrin IX Amide
Riboflavin and protoporphyrin IX are two molecules that participate in oxidation and reduction reactions in the living cell. Changing some functional groups of riboflavin and protoporphyrin IX can provide compounds with self-assembled monolayer properties with wide applications in designing the molecular electronic devices. In this study, the amphiphilic structure of riboflavin and protopor...
متن کاملEffect of zinc substitution on molecular dynamics of protoporphyrin-IX
We report the effects of zinc metal substitution on the molecular dynamics of protoporphyrin-IX in dichloromethane solvent by spectrally resolving the femtosecond photon echo spectrum. We have found that the coherence and population dynamics change due to the presence of Zn metal in the protoporphyrin-IX system. Zinc metal reduces the conformational disorder in the molecular structure of protop...
متن کاملZinc protoporphyrin IX binds heme crystals to inhibit the process of crystallization in Plasmodium falciparum.
The intraerythrocytic Plasmodium falciparum parasite converts most of host hemoglobin heme into a nontoxic heme crystal. Erythrocyte zinc protoporphyrin IX, normally present at 0.5 microM, which is a ratio of 1:40,000 hemes, can elevate 10-fold in some of the anemias associated with malaria disease protection. This work examines a binding mechanism for zinc protoporphyrin IX inhibition of heme ...
متن کاملSimultaneous liquid-chromatographic determination of zinc protoporphyrin IX, protoporphyrin IX, and coproporphyrin in whole blood.
We describe a method for simultaneously measuring concentrations of coproporphyrin, zinc protoporphyrin IX, and protoporphyrin IX in whole blood by liquid chromatography, with use of reversed-phase ion-pair system, fluorometric detection, and internal standardization. Each analysis requires 10 microL of whole blood and 15 min total analysis time. Analytical recovery ranged from 84 to 92%, day-t...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016